China Custom Poly Chain Gt 2 Timing Belt Pulley pulley system

Product Description

CHINAMFG Machinery offers a wide range of high quality Timing Belt Pulleys and Toothed Bars / Timing Bars. Standard and non-standard pulleys according to drawings are available.

Types of material:
  1. AlCuMgPb 6061 6082 Aluminum Timing Pulley
  2. C45E 1045 S45C Carbon Steel Timing Pulley
  3. GG25 HT250 Cast Iron Timing Pulley
  4. SUS303 SUS304 AISI431 Stainless Steel Timing Pulley
  5. Other material on demand, such as cooper, bronze and plastic
 
Types of surface treatment
 1.  Anodized surface -Aluminum Pulleys
 2.  Hard anodized surface — Aluminum Pulleys
 3.  Black Oxidized surface — Steel Pulleys
 4. Zinc plated surface — Steel Pulleys
 5. Chromate surface — Steel Pulleys;  Cast Iron Pulleys
 6. Nickel plated surface –Steel Pulleys;  Cast Iron Pulleys 
 
Types of teeth profile

Teeth Profile Pitch
HTD 3M,5M,8M,14M,20M
AT AT5,AT10,AT20
T T2.5,T5,T10
MXL 0.08″(2.032MM)
XL 1/5″(5.08MM)
L 3/8″(9.525MM)
H 1/2″(12.7MM)
XH 7/8″(22.225MM)
XXH 1 1/4″(31.75MM)
STS STPD S2M,S3M,S4.5M,S5M,S8M,S14M
RPP RPP5M,RPP8M,RPP14M,RPP20M
PGGT PGGT  2GT, 3GT and 5GT
PCGT GT8M,GT14M

 
Types of pitches and sizes

Imperial Inch Timing Belt Pulley,
1.     Pilot Bore MXL571 for 6.35mm timing belt; teeth number from 16 to 72;
2.  Pilot Bore XL037 for 9.53mm timing belt; teeth number from 10 to 72;
3.  Pilot Bore, Taper Bore L050 for 12.7mm timing belt; teeth number from 10 to 120;
4.  Pilot Bore, Taper Bore L075 for 19.05mm timing belt; teeth number from 10 to 120;
5.  Pilot Bore, Taper Bore L100 for 25.4mm timing belt; teeth number from 10 to 120;
6.  Pilot Bore, Taper Bore H075 for 19.05mm timing belt; teeth number from 14 to 50;
7.  Pilot Bore, Taper Bore H100 for 25.4mm timing belt; teeth number from 14 to 156;
8.  Pilot Bore, Taper Bore H150 for 38.1mm timing belt; teeth number from 14 to 156;
9.  Pilot Bore, Taper Bore H200 for 50.8mm timing belt; teeth number from 14 to 156;
10.  Pilot Bore, Taper Bore H300 for 76.2mm timing belt; teeth number from 14 to 156;
11.  Taper Bore XH200 for 50.8mm timing belt; teeth number from 18 to 120;
12.  Taper Bore XH300 for 76.2mm timing belt; teeth number from 18 to 120;
13.  Taper Bore XH400 for 101.6mm timing belt; teeth number from 18 to 120;

Metric Timing Belt Pulley T and AT
1.  Pilot Bore T2.5-16 for 6mm timing belt; teeth number from 12 to 60; 
2.   Pilot Bore T5-21 for 10mm timing belt; teeth number from 10 to 60; 
3.   Pilot Bore T5-27 for 16mm timing belt; teeth number from 10 to 60; 
4.   Pilot Bore T5-36 for 25mm timing belt; teeth number from 10 to 60; 
5.   Pilot Bore T10-31 for 16mm timing belt; teeth number from 12 to 60; 
6.   Pilot Bore T10-40 for 25mm timing belt; teeth number from 12 to 60; 
7.   Pilot Bore T10-47 for 32mm timing belt; teeth number from 18 to 60; 
8.   Pilot Bore T10-66 for 50mm timing belt; teeth number from 18 to 60;
9.  Pilot Bore AT5-21 for 10mm timing belt; teeth number from 12 to 60;
10. Pilot Bore AT5-27 for 16mm timing belt; teeth number from 12 to 60;
11. Pilot Bore AT5-36 for 25mm timing belt; teeth number from 12 to 60; 
12. Pilot Bore AT10-31 for 16mm timing belt; teeth number from 15 to 60; 
13. Pilot Bore AT10-40 for 25mm timing belt; teeth number from 15 to 60; 
14. Pilot Bore AT10-47 for 32mm timing belt; teeth number from 18 to 60; 
15. Pilot Bore AT10-66 for 50mm timing belt; teeth number from 18 to 60;
  
Metric Timing Belt Pulley HTD3M, 5M, 8M, 14M 
1.  HTD3M-06; 3M-09; 3M-15; teeth number from 10 to 72; 
2.  HTD5M-09; 5M-15; 5M-25; teeth number from 12 to 72; 
3.  HTD8M-20; 8M-30; 8M-50; 8M-85 teeth number from 22 to 192; 
4.  HTD14M-40; 14M-55; 14M-85; 14M-115; 14M-170; teeth number from 28-216; 
5.  Taper Bore HTD5M-15; 8M-20; 8M-30; 8M-50; 8M-85; 14M-40; 14M-55; 14M-85;
         14M-115; 14M-170

Metric Timing Belt Pulleys for Poly Chain GT2 Belts 
1.      PCGT8M-12; PCGT8M-21; PCGT8M-36; PCGT8M-62; 
2.      PCGT14M-20; PCGT14M-37; PCGT14M-68; PCGT14M-90; PCGT14M-125;

Power Grip CHINAMFG Tooth/ PGGT 2GT, 3GT and 5GT 
1. 2GT-06, 2GT-09 for timing belt width 6mm and 9mm 
2. 3GT-09, 3GT-15 for timing belt width 9mm and 15mm 
3. 5GT-15, 5GT-25 for timing belt width 15mm and 25mm

OMEGA RPP HTD Timing Pulleys 
1.   RPP3M-06; 3M-09; 3M-15; teeth number from 10 to 72; 
2.   RPP5M-09; 5M-15; 5M-25; teeth number from 12 to 72; 
3.   RPP8M-20; 8M-30; 8M-50; 8M-85 teeth number from 22 to 192; 
4.   RPP14M-40; 14M-55; 14M-85; 14M-115; 14M-170; teeth number from 28-216; 
5.  Taper Bore RPP5M-15; 8M-20; 8M-30; 8M-50; 8M-85; 14M-40; 14M-55; 14M-85;
     14M-115; 14M-170 .

Ubet Machinery is also competetive on these power transmission components.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Certification: ISO
Pulley Sizes: Timing
Manufacturing Process: Sawing
Samples:
US$ 3/Piece
1 Piece(Min.Order)

|

Order Sample

Normally sample order can be ready in 15 days
Customization:
Available

|

Customized Request

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

belt pulley

How do belt pulleys affect the performance of woodworking and milling machines?

Belt pulleys have a significant impact on the performance of woodworking and milling machines. They play a crucial role in power transmission, speed control, and overall functionality of these machines. Here’s a detailed explanation of how belt pulleys affect the performance of woodworking and milling machines:

1. Power Transmission: Belt pulleys are essential for power transmission in woodworking and milling machines. They connect the motor or engine to various components, such as the cutting tools, spindles, or feed mechanisms. The rotation of the pulleys transfers power from the motor to the driven components, enabling them to perform their cutting, shaping, or drilling functions. The efficiency and effectiveness of power transmission through the belt pulleys directly impact the overall performance of the machine.

2. Speed Control: Belt pulleys provide speed control in woodworking and milling machines. By using pulleys of different sizes or incorporating variable speed pulley systems, the rotational speed of the driven components can be adjusted. This allows operators to customize the speed based on the specific material being worked on and the desired cutting or milling results. Speed control provided by belt pulleys ensures precision, accuracy, and optimal performance in woodworking and milling operations.

3. Torque Conversion: Belt pulleys also play a crucial role in torque conversion. Torque refers to the rotational force produced by the motor or engine. In woodworking and milling machines, belt pulleys with different diameters can be used to convert the torque generated by the motor into the appropriate torque required by the cutting tools or spindles. This torque conversion ensures that the machine can handle different types of materials and cutting operations effectively, enhancing overall performance.

4. Belt Tension and Stability: Proper tension and stability of the belts running on the pulleys are essential for the performance of woodworking and milling machines. The tension in the belts needs to be adjusted to ensure optimal power transmission and prevent slipping or belt damage. Belt pulleys are designed to maintain the appropriate tension and stability of the belts, ensuring smooth and consistent operation of the machine. This contributes to the accuracy, reliability, and safety of woodworking and milling processes.

5. Tooling and Cutter Compatibility: Belt pulleys can affect the performance of woodworking and milling machines by influencing tooling and cutter compatibility. Different cutting tools and milling cutters require specific rotational speeds and power transmission capacities. The selection of appropriate pulleys and belt arrangements ensures compatibility between the machine’s power transmission system and the cutting tools or milling cutters being used. This compatibility is crucial for achieving desired cutting results, prolonging tool life, and maximizing machine performance.

6. Noise and Vibration: Belt pulleys can impact the noise and vibration levels of woodworking and milling machines. Proper alignment and balancing of the pulleys are essential to minimize vibration and noise generated during operation. Excessive noise and vibration can affect the precision of cuts or milling operations and lead to accelerated wear and tear of machine components. Well-designed and properly maintained belt pulleys contribute to reduced noise and vibration, enhancing the overall performance and operator comfort.

7. Maintenance and Serviceability: Belt pulleys in woodworking and milling machines are designed for easy maintenance and serviceability. They allow for straightforward belt replacement, adjustment, or pulley inspection, ensuring that the machine can be properly maintained and serviced. This contributes to the longevity, reliability, and uninterrupted operation of the woodworking and milling machines.

In summary, belt pulleys have a significant impact on the performance of woodworking and milling machines. They enable power transmission, speed control, torque conversion, and stability of belts. Belt pulleys affect tooling and cutter compatibility, noise and vibration levels, as well as the maintenance and serviceability of the machines. By selecting appropriate pulleys, maintaining proper belt tension, and ensuring pulley alignment, woodworking and milling machines can achieve optimal performance, accuracy, and efficiency in various cutting and shaping tasks.

belt pulley

How do belt pulleys contribute to the operation of conveyor systems for material handling?

Belt pulleys play a crucial role in the operation of conveyor systems for material handling. Conveyor systems are widely used in industries such as manufacturing, mining, logistics, and agriculture to transport bulk materials or goods from one location to another. The belt pulleys in these systems contribute significantly to their functionality, efficiency, and reliability. Here’s a detailed explanation of how belt pulleys contribute to the operation of conveyor systems for material handling:

1. Power Transmission: Belt pulleys serve as the driving force for conveyor systems, transmitting power from an electric motor or engine to move the conveyor belt. The pulley is typically connected to the motor or engine shaft, and as it rotates, it drives the belt, which in turn transports the materials along the conveyor. The size and design of the pulley, along with the tension in the belt, determine the power transmission efficiency and the capacity of the conveyor system to handle different load weights and volumes.

2. Belt Tension and Tracking: Belt pulleys help maintain proper tension and tracking of the conveyor belt. Tensioning pulleys are used to adjust and maintain the tension in the belt, ensuring it remains taut and properly engaged with the pulleys. Tracking pulleys, also known as snub or bend pulleys, are strategically positioned to guide the belt and keep it centered on the pulley system. Proper tension and tracking prevent belt slippage, misalignment, and material spillage, ensuring smooth and reliable operation of the conveyor system.

3. Speed Control: Belt pulleys enable speed control in conveyor systems. By using different-sized pulleys or adjusting the pulley arrangement, the speed of the conveyor belt can be modified to suit specific material handling requirements. Speed control is essential for optimizing production processes, accommodating different material characteristics, and ensuring efficient material flow along the conveyor system.

4. Directional Changes: Belt pulleys facilitate directional changes in conveyor systems. By incorporating various pulley configurations, such as drive pulleys, idler pulleys, and bend pulleys, the conveyor belt can be guided around curves or redirected to different paths. This allows for flexible routing and layout of the conveyor system to adapt to space constraints or specific material flow patterns in material handling operations.

5. Load Distribution: Belt pulleys contribute to the even distribution of the load on the conveyor belt. As the belt wraps around the pulleys, the contact area between the belt and pulley surface spreads the load across a larger surface area. This load distribution minimizes stress concentration, reduces belt wear, and extends the operational life of the conveyor system.

6. Maintenance and Safety: Belt pulleys play a role in the maintenance and safety of conveyor systems. Accessible pulleys allow for easy inspection, cleaning, and maintenance of the conveyor belt. Pulley guards and covers provide protection against accidental contact with moving parts, enhancing the safety of personnel working around the conveyor system.

7. Customization and Adaptability: Belt pulleys can be customized and designed to meet specific material handling requirements. They can be manufactured in various sizes, materials, and configurations to accommodate different belt widths, load capacities, and environmental conditions. This customization ensures that the belt pulleys are optimized for the specific needs of the material handling application.

In summary, belt pulleys are integral components of conveyor systems for material handling. They contribute to power transmission, belt tensioning, speed control, directional changes, load distribution, and overall system maintenance and safety. By utilizing appropriately sized and designed belt pulleys, conveyor systems can efficiently and reliably transport bulk materials or goods, enhancing productivity and streamlining material handling operations in various industries.

belt pulley

What is a belt pulley, and how is it used in mechanical systems?

A belt pulley is a mechanical device used in various systems to transmit power and motion between rotating shafts. It consists of a wheel with a grooved rim, known as the pulley, that is connected to a shaft. The pulley is typically made of materials such as cast iron, steel, or aluminum. It is used in conjunction with a belt or a rope to transfer rotational motion from one shaft to another. Here’s a detailed explanation:

A belt pulley is essential in mechanical systems for the following purposes:

  • Power Transmission: The primary function of a belt pulley is to transmit power between rotating shafts. It connects the driving shaft (input) to the driven shaft (output) through a belt or a rope. When the driving shaft rotates, the belt or rope engages with the grooves on the pulley, causing the pulley and the driven shaft to rotate. This allows power to be transferred from the driving shaft to the driven shaft, enabling the operation of various mechanical components or systems.
  • Speed Control: Belt pulleys are used to control the rotational speed of driven shafts. By varying the size or ratio of the pulleys connected by the belt, the rotational speed can be adjusted. Using different-sized pulleys, it is possible to increase or decrease the speed of the driven shaft compared to the driving shaft. This speed control capability is beneficial in applications where different rotational speeds are required for specific operations or to match the requirements of different components in a system.
  • Directional Change: Belt pulleys also enable the change of direction in mechanical systems. By arranging multiple pulleys with belts or ropes in a system, the rotational motion can be redirected. For example, a system with two pulleys connected by a belt can change the direction of the driven shaft compared to the driving shaft. This directional change allows for the transmission of power and motion in desired orientations, enabling the operation of mechanical components or systems in different directions.
  • Tension Control: Belt pulleys play a role in maintaining proper tension in belt-driven systems. The tension in the belt is important to ensure a secure and reliable connection between the pulleys. Pulleys with adjustable features, such as tensioning systems or idler pulleys, help maintain the optimal tension in the belt. Proper tension control prevents belt slippage, ensures efficient power transmission, and reduces wear on the belt and pulley surfaces.
  • Noise and Vibration Reduction: Belt pulleys contribute to noise and vibration reduction in mechanical systems. The design of the pulley, including the groove profile and surface finish, can help minimize noise and vibration generated during operation. Additionally, proper alignment and tensioning of the belt ensure smoother engagement with the pulley, reducing noise and vibration levels. This is particularly important in applications that require quiet operation or where excessive vibrations can affect system performance or operator comfort.
  • Compatibility and Interchangeability: Belt pulleys offer compatibility and interchangeability benefits in mechanical systems. They provide a flexible and modular approach to power transmission, allowing different pulleys to be easily interchanged or replaced based on specific requirements. This versatility enables system designers and operators to adapt and modify mechanical systems more efficiently, making it easier to accommodate changes in load, speed, or other operational parameters.

In summary, a belt pulley is a mechanical device used for power transmission and motion control in various mechanical systems. It connects rotating shafts through belts or ropes, allowing power to be transmitted from one shaft to another. Belt pulleys provide speed control, directional change, tension control, noise and vibration reduction, as well as compatibility and interchangeability benefits. By utilizing belt pulleys, mechanical systems can efficiently transfer power, control speeds, and enable the operation of different components or systems in desired directions.

China Custom Poly Chain Gt 2 Timing Belt Pulley   pulley system	China Custom Poly Chain Gt 2 Timing Belt Pulley   pulley system
editor by CX